2026/02/04 11:00 1/2 Preparacion entorno de programacion del ESP32

Table of Contents

Preparacion entorno de programacion del ESP32 ... 1
Preparacion del @NTOINO0cccoviiiiiiiie e e e s 1
INStalacion IDE @rduinoccccooiuiieiiiii ettt e e 1
Configuracion para la programacion del ESP32ccccccciiiiiiiii i 1
RESOIUCION d@ @IIOIESc.cevoeeeie e e et e et e e e e e e e 3
Deteccion del dispositivo conectado por bus I2Cc.ccccccoiiiiiiiiiiii i 4
Uso de libreria criptografica con el chip ATECC508Accocooiiieie i 5
Ejemplo 1 - Configuracion del chip criptografiCococoviiiiiiiiiiie e 6
EJemplo 2 - FIrmMar UN MENS@JE .iiviveeiiiiiiiiiiiiiiiiiiie s e e e e e e e e e e e et e et aassasba s s s s s s s e e e eeesaaaaaaeesssssssssnnnnns 7
Ejemplo 3 - Verificacidn de Firma Digitalccccooiiiiiiiiiiiiiii et 9
Ejemplo 5 - Generacion de NUMeros aleatorioscccvuvveiiiiiiiiiieiiie e 9
Yo [V Tl o g I e LI 4 o =L USROS 10
Instalacion del ACE Framework en €l ESP32ccccoooiiie i 11
Problemas €N MONGOOSE ...ooiviiiiiiiiiiiiiiiiii st e e ettt e e e e e e e e e e e e e e e eaea e e e e e bbb s 11

OdinS Wiki - https://wiki.odins.es/

Last

;8(212;?0/09 public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

08:35

https://wiki.odins.es/ Printed on 2026/02/04 11:00

2026/02/04 11:00 1/12 Preparacion entorno de programacion del ESP32

Preparacion entorno de programacion del
ESP32

esp32, ide, arduino

Preparacion del entorno

La siguiente descripcion de una instalacion ha sido llevada a cabo en un sistema operativo Linux,
concretamente en la distribucion Ubuntu 20.04. En el caso de Windows, quiza sean necesarios otros
pasos.

Instalacion IDE arduino

Una de las maneras de programar la placa ESP32 es usando el IDE de arduino. Para ello, acceder a
https://docs.arduino.cc/software/ide-v1/tutorials/Linux y descargar la versién deseada. Una vez
extraido el fichero descargado, ejecutar como super usuario el script install.sh.

Configuracion para la programacion del ESP32

Para poder usar el IDE con el ESP32, es necesario acceder a preferencias y en Gestor de URLs
adicionales de tarjetas copias la siguiente URL
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

OdinS Wiki - https://wiki.odins.es/

https://wiki.odins.es/tag/esp32?do=showtag&tag=esp32
https://wiki.odins.es/tag/ide?do=showtag&tag=ide
https://wiki.odins.es/tag/arduino?do=showtag&tag=arduino
https://docs.arduino.cc/software/ide-v1/tutorials/Linux
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Last
update:
2024/10/0
08:35

B Preferences X

Settings | Network

9 public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

Sketchbook location:

=l

) /home/santiago/Arduino Browse
ol |
Editor language: Systerm Default - (requires restart of Arduino)
=[]
Editor Font size: 12
L
Interface scale: Automatic 100 _ % (requiresrestart of Arduino)
% Theme: Default theme = (requires restart of Arduina)
U Show verbose output during: compilation upload
is
B4 Compiler warnings: MNone -
s
Display line numbers Enable Code Folding
Verify code after upload Use external editor
/ Check For updates on startup Save when verifying or uploading

Use accessibility Features
Additional Boards Manager URLs: | hktps://raw.githubusercontent.corn/espressif/arduino-esp32/gh-pac [

More preferences can be edited directly in the file
/home/santiago/.arduino15/preferences.bxt
(edit only when Arduino is not running)

OK | Cancel

MRS crons are guoas

Pulsamos el botdn ok, en el apartado de herramientas, placas, seleccionamos el administrador de
placas (board manager), buscamos por esp32 y lo instalamos. Una vez instalado, en el apartado de
placas debe aparecer ESP32 Arduino y dentro de ese apartado seleccionamos nuestra placa en
concreto (en el caso de la placa ESP32 ESP-WROOM-32 NodeMCU v2 la opcion ESP32 DEV Module ha
funcionado correctamente).

https://wiki.odins.es/ Printed on 2026/02/04 11:00

https://wiki.odins.es/_detail/public/training/gestorurlarduino.png?id=public%3Atraining%3Apreparacionprogramacionesp32

2026/02/04 11:00 3/12 Preparacion entorno de programacion del ESP32

Boards Manager x

i
Type Al v || esp3z

|l esp32

| by Espressif Systems version 2.0.2 INSTALLED

| Boards included in this package:
ESP32 Dev Board, ESP32-52 Dev Board, ESP32-C2 Dev Board,
Mare Info

P Select versi... ¥ | Install Rermove

cd
Close

Una vez esté seleccionado, para testear el funcionamiento es interesante probar un hola mundo. Para
ello, copiamos este cddigo y lo ejecutamos.

void setup() {
Serial.begin(115200);
}

void loop() {
Serial.println("Hello from DFRobot ESP-WROOM-32");
delay(1000);

}

Resolucion de errores

Si aparece un error de compilacion indicando ImportError: No module named serial significa que hay
un problema la libreria pyserial de python. Si tras instalarla con
Pip install pyserial

el problema persiste, puede ser un problema respecto a la version de python y sus librerias. Una
solucion es ejecutar el comando

sudo apt install python-is-python3

Una vez hecho esto, ya deberia poderse compilar el programa sin problema. A la hora de subir el
programa a la placa, puede aparecer el siguiente error.

Permission denied on /dev/ttyXXX

Para solucionarlo, hay que consultar la terminal y localizar el grupo al que pertenece el puerto con

OdinS Wiki - https://wiki.odins.es/

https://wiki.odins.es/_detail/public/training/boardmanageresp32.png?id=public%3Atraining%3Apreparacionprogramacionesp32

Last
update:
2024/10/09
08:35

ls -1 /dev/ttyXXX

public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

Obteniendo algo como lo siguiente

crw-rw---- 1 root dialout 188, 0 5 apr 23.01 ttyACMO

Para afladir nuestro usuario al grupo ejecutamos el comando
sudo usermod -a -G dialout <username>

Otra opcion es ejecutar el comando

sudo chmod a+rw /dev/ttyXXX

Con esto, ya se deberia subir el programa de prueba a la placa ESP32. Para consultar la salida, abrir
el monitor serie y poner los baudios al nimero indicado en el Serial.begin, en este caso 115200.

Deteccion del dispositivo conectado por bus 12C

Para comprobar si el ESP32 detecta el chip criptografico (o cualquier otro elemento) conectado a
través del bus 12C, el siguiente codigo es Util para obtener la direccion hexadecimal de los chips con
los que se comunica.

#include <Wire.h>

void setup() {
Wire.begin();
Serial.begin(115200);
Serial.println("\nI2C Scanner");

}

void loop() {
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0) {
Serial.print("I2C device found at address 0x");
if (address<16) {
Serial.print("0");
}
Serial.println(address, HEX);

https://wiki.odins.es/ Printed on 2026/02/04 11:00

2026/02/04 11:00 5/12 Preparacion entorno de programacion del ESP32

nDevices++;

}
else if (error==4) {
Serial.print("Unknow error at address 0x");
if (address<16) {
Serial.print("0");

}
Serial.println(address,HEX);

}
¥
if (nDevices == 0) {
Serial.println("No I2C devices found\n");

}
else {
Serial.println("done\n");

}
delay(5000);

}

La salida particular en nuestro caso es la siguiente:

Scanning. ..
I2C device found at address 0x60
done

Por lo que se detecta el chip criptografico.

NOTA: Si al tratar de inyectar el cédigo para la deteccién de dispositivos conectado al bus 12C se
obtiene el error A fatal error occurred: Failed to connect to ESP32: Invalid head of packet puede
significar que sea necesario pulsar el botdn de reset antes de cargar el programa.

Uso de libreria criptografica con el chip ATECC508A

Una opcidén de firmar y verificar mensajes es haciendo uso de la libreria criptografica de Sparkfun.

Para usarla, a través del gestor de librerias, instalamos la relativa a Sparkfun Cryptographic, como
podemos ver en la imagen.

OdinS Wiki - https://wiki.odins.es/

Last

;8(212;%/09 public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

08:35

] Library Manager X

i
Type | All v | Topic | All v | | sparkFun crypto|

|| SparkFun ATECCX08a Arduino Library

by SparkFun Electronics Version 1.3.0 INSTALLED

Library for the Microchip ATECCX08a Cryptographic Co-processors. This can be used to get up and running with the MicroChip ATECCS08a and
ATECC608a chips.

More info

Close

Una vez esta la libreria correctamente instalada, se pueden usar los ejemplos para comprobar el
funcionamiento del chip, yendo al apartado Ejemplos del IDE de Arduino.

Ejemplo 1 - Configuracion del chip criptografico

Antes de realizar cualquier operacién con el chip, es necesario configurarlo para bloquear el acceso a
la clave privada, entre otras cosas. Una vez ejecutado el programa de configuracién, esta se queda
bloguedada para siempre.

Al finalizar la ejecucién se imprimira un mensaje indicando la clave publica del chip, la clave privada
nunca se va a poder consultar.

A continuacién vemos un ejemplo de salida:

Configuration beginning.

Write Config: Success!
Lock Config: Success!
Key Creation: Success!

Lock Data-OTP: Success!

Lock Slot O: Success!

https://wiki.odins.es/ Printed on 2026/02/04 11:00

https://wiki.odins.es/_detail/public/training/librarysparkfun.png?id=public%3Atraining%3Apreparacionprogramacionesp32

2026/02/04 11:00 7/12 Preparacion entorno de programacion del ESP32

Configuration done.

Serial Number: 0123C5C7349171DDEE
Rev Number: 00005000

Config Zone: Locked

Data/OTP Zone: Locked

Data Slot 0O: Locked

This device's Public Key:

uint8 t publicKey[64] = {

OxB2, OxAA, OxE7, 0x84, 0x1D, 0x43, 0x5C, OxE6, 0x49, OxFD, 0x26, 0x3B,
Ox8D, OxC2, OxF8, Ox2A,

0x20, 0x49, O0x9A, OxFC, OxAE, OxFE, 0x25, 0x1C, Ox6A, 0x90, 0x26, 0xC6,
0x40, OxC3, 0x4C, Ox5F,

Ox3A, 0x98, OxAA, OxA4, O0x2B, OxFE, 0x46, 0x40, 0x99, 0xB4, OxC5, 0x26,
Ox81, 0x94, Ox6B, 0x18,

OxDF, Ox3D, OxE6, 0x18, Ox6D, 0x4C, Ox61l, OXEO, Ox1F, OxD2, 0Ox4F, 0x73,
Ox80, OxB2, 0Ox2E, 0Ox68

};

Ejemplo 2 - Firmar un mensaje

En este ejemplo, dado un mensaje y usando la clave privada almacenada en el chip, se procedera a
realizar la firma digital.

Cosas importantes que hay que saber sobre las firmas ECC:

e Las firmas ECC se crean utilizando una clave privada secreta y el algoritmo de la curva eliptica.
Para el propoésito de este ejemplo, podemos ignorar la impresidn de la clave publica de las
llaves en la parte superior - esto es parte de la funcién printinfo(). Como nota adicional, nunca
conoceremos la clave privada del dispositivo. La clave privada de este dispositivo se crea, se
almacena y se bloquea dentro del dispositivo.

e Las firmas ECC tienen una longitud de 64 bytes.

e Contrariamente a la mayoria de las definiciones de las firmas, las firmas ECC son diferentes
cada vez. Las ECC incluyen aleatoriedad intencionada en el calculo, por lo que siempre
producirdn una nueva firma Unica. Sin embargo, cada firma que cree pasara la verificacion

OdinS Wiki - https://wiki.odins.es/

Last
update:
2024/10/09
08:35

public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

(como veremos mas adelante en el ejemplo 3). Pruebe a pulsar “reset” en su Artemis unas
cuantas veces y observe como cambian los valores de la firma. Mismo mensaje + misma clave
privada = nueva firma.

e Con el ATECC508A, sélo podemos enviarle 32 bytes de datos para firmar. Si necesitas firmar
algo mas grande, entonces se recomienda crear primero un hash de 32 bytes de los datos, y
luego puedes firmar el hash. Basicamente, cuando envias un monton de datos a un algoritmo
de hash (como SHA256), éste siempre respondera con un resumen unico de 32 bytes. Es muy
similar a la creacién de una firma digital, sin embargo no requiere una clave, por lo que
cualquiera puede calcular el hash de cualquier dato. Puedes encontrar que para muchos
proyectos, 32 bytes son suficientes datos, asi que por ahora, no hay necesidad de buscar
hashes.

Al firmar el mensaje, obtendremos la siguiente salida:

This device's Public Key:

uint8 t publicKey[64] = {

0xB2, OxAA, OxE7, O0x84, 0x1D, 0x43, 0x5C, OxE6, 0x49, OxFD, 0x26, 0x3B,
0x8D, 0xC2, OxF8, 0Ox2A,

0x20, 0x49, O0x9A, OxFC, OxAE, OxFE, 0x25, 0x1C, Ox6A, 0x90, 0x26, 0xCé6,
0x40, OxC3, 0x4C, Ox5F,

Ox3A, 0x98, OxAA, 0OxA4, 0x2B, OxFE, 0x46, 0x40, 0x99, 0xB4, 0OxC5, 0x26,
Ox81, 0Ox94, 0Ox6B, 0x18,

OxDF, Ox3D, OxE6, 0x18, Ox6D, 0x4C, O0x61, OxEO, Ox1F, 0xD2, Ox4F, 0x73,
0x80, 0xB2, Ox2E, 0x68

};

uint8 t message[32] = {

Ox00, Ox01, Ox02, Ox03, 0x04, Ox05, O0x06, Ox07, 0xO08, O0x09, OxOA, 0x0OB,
Ox0C, OxOD, OxOE, OxOF,

0x10, Ox11, O6x12, O0x13, Ox14, 0x15, O0x16, 0x17, O0x18, 0x19, Ox1A, Ox1B,
0x1C, Ox1D, Ox1E, Ox1F

};

uint8 t signature[64] = {

OxD6, OxC6, Ox53, OxB5, Ox8E, OxD3, OxFA, Ox4A, OxD8, OxB6, OxXAE, 0Ox9A,
Ox0OF, O0x71, OxD3, 0x17,

https://wiki.odins.es/ Printed on 2026/02/04 11:00

2026/02/04 11:00 9/12 Preparacion entorno de programacion del ESP32

OxBB, O0x87, 0x0C, OxF4, OxE9, OxDB, OxFE, 0x44, 0x05, 0x06, 0x3B, 0xD2,
0x09, Ox6A, 0x68, 0x5C,

OxC1l, OxF5, Ox1F, 0xB8, 0OxD8, 0x44, 0xB3, 0x64, 0x75, OxEC, OxE1l, 0OxD5,
Ox8C, OxFA, 0x26, Ox8A,

0x89, 0Ox9B, OxC2, 0Ox27, Ox85, 0x94, 0x51, 0xC3, OxB9, O0xBF, OxE3, 0x40,
Ox57, Ox8E, 0Ox6D, Ox3B

};

La funcién de la libreria usada para realizar la firma digital de un mensaje es
createSignature(mensaje), usando por defecto la clave privada localizada y bloqueada en el chip.

Ejemplo 3 - Verificacion de Firma Digital

En este caso, se dara un mensaje, una clave publica y una firma. Debido a la naturaleza de las claves
asimétricas, partiendo de un mensaje firmado por una clave privada, con la clave publica asociada a
dicha clave privada podemos verificar que el mensaje esta firmado por un usuario particular.

La funcién de la libreria usada para realizar la firma digital de un mensaje es
verifySignature(mensaje, mensajeFirmado, clavePublica)

Ejemplo 5 - Generacion de numeros aleatorios

Otra funcién aportada por la libreria de Sparkfun y soportada por el chip criptografico ATECC508A es
la generacién de nimeros aleatorios de 32 bytes.

Un ejemplo de la salida obtenida es la siguiente:

Random number: 46

Random number2: 467

Random Byte: 0x1D

Random Int: 28715

Random Long: 1027057910

atecc.random32Bytes[32]:
F7BC4EAE52BC6B34946B45FAAGEFSEOBBBB8726363F01190BB8FOCAE46F6028D
Random number: 15

Random number2: 201

OdinS Wiki - https://wiki.odins.es/

Last
update:
2024/10/09
08:35

Random Byte: 0x94

public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

Random Int: 31296
Random Long: -193108556

atecc.random32Bytes[32]:
2BADC5F66F215490697DE8836C85C391088DB2227B76F9A72D9EF5E10F6A71E0

Random number: 43
Random number2: 441
Random Byte: 0x8
Random Int: 22112
Random Long: -408265483

atecc.random32Bytes[32]:
E453A7D19375CFA3A72689B045FC2E1E8C25D3F5217F4607AC4D15F53E2DBCEB

Como podemos ver en los ejemplos, esta libreria tiene varias opciones de generar nimeros
aleatorios.

¢ Generacion de niUmero en un intervalo con random(intervalo)

» Generacion de byte aleatorio con getRandomByte()

» Generacion de entero (int) aleatorio con getRandomint()

» Generacion de long aleatorio con getRandomLong()

e Generacion de valor de 32 Bytes aleatorio con updateRandom32Bytes()

Esta Ultima opcidn es muy interesante ya que por su naturaleza es practicamente imposible que se
repita un valor generado aleatoriamente de dichas caracteristicas, por lo que puede ser usado para
acompafar mensajes firmados o como parametro en el intercambio de las claves criptograficas.

Resolucion de errores

Si durante la ejecucién de algun cédigo donde imprimamos algo por el Serial no se ven los datos o se
ven extrafnos caracteres, en primer lugar hay que comprobar si los baudios concuerdan con los
especificados en el Serial.begin(numBaudios).

Si el nimero es el mismo entre el monitor serial y el serial begin y sigue sin verse nada, es posible
que la placa esté tardando demasiado en abrir el serial, sigue la ejecucién del cédigo y cuando el
serial esta abierto ya no hay nada que imprimir por él. Para evitar esto, si se da, hay dos opciones:

e Poner un delay() después del Serial.begin() con un tiempo lo suficientemente alto para que
dé tiempo a iniciarse el serial antes de seguir ejecutando el resto del cédigo. Tiene el

https://wiki.odins.es/ Printed on 2026/02/04 11:00

2026/02/04 11:00 11/12 Preparacion entorno de programacion del ESP32

inconveniente de no ser una buena practica que puede dar lugar a cddigo no paralelizable.
e La otra opcién es usar un while (!Serial) después del serial.begin, con el problema de que si
no se abre un serial monitor el cédigo no avanzara.

Otra opcién de depuracién es usar el comando dmesg -w es util al trabajar con embebidos, muestra
si ha habido errores al subir el codigo a la placa.

Instalacion del ACE Framework en el ESP32

Para comenzar este proceso, es conveniente instalar en el ordenador donde se trabaje el framework
Mongoose OS, utilizado para el desarrollo de firmware.

Para la instalacion de Mongoose OS en Linux se siguen los siguientes comando:

sudo add-apt-repository ppa:mongoose-0s/mos
sudo apt-get update
sudo apt-get install mos

Y ejecutando mos en la terminal, se abrird en nuestro navegador en la direccién
http://127.0.0.1:1992/ una interfaz gréfica para trabajar con él.

Desde esta interfaz, después de configurarla correctamente escogiendo el puerto y la placa con la
que se esta trabajando, nos tenemos que situar en la carpeta donde se encuentre descargado el
proyecto y ejecutar mos build.

Una vez termine, ya flasheamos la memoria del ESP32 con el comando mos flash. Tras esto, y como
ultimo paso tenemos que configurar la placa para que se conecte a una direcciéon WiFi, usando el
comando mos wifi \<NOMBREDELARED> <CONSTRASENA>. Una vez se haya conectado,
veremos por la terminal la direccién IP del dispositivo, por lo que con esta direccién y sabiendo que es
el puerto 8000 el que se encuentra abierto (se puede comprobar haciendo uso del comando nmap o
bien buscando en el cédigo que hemos flasheado en la placa), sélo falta instalar el Authorization
Server y el Client en nuestra maquina local, y hacer que ambas instancias apunten al ESP32 con el
Authorization Server.

Problemas en Mongoose

Para construir el firmware usando el comando mos build se usa un servidor cloud proporcionado por
Mongoose. En algunas ocasiones, el certificado x509 expira, por lo que si se ejecuta el comando se
devolvera el siguiente mensaje de error:

Error: Post https://build.mongoose-os.com/api/fwbuild/2.20.0/build: x509:
certificate has expired or is not yet valid
/build/mos-Wt49Ss/mos-2.20.0+0278853~focal@/cli/build remote.go:329:
/build/mos-Wt49Ss/mos-2.20.0+0278853~focal0@/cli/build.go:278:
/build/mos-Wt49Ss/mos-2.20.0+0278853~focalO@/cli/build.go:221:
/build/mos-Wt49Ss/mos-2.20.0+0278853~focalO@/cli/main.go:194: build failed

OdinS Wiki - https://wiki.odins.es/

http://127.0.0.1:1992/

Last
update:
2024/10/09
08:35

public:training:preparacionprogramacionesp32 https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

exit status 1

Para abordar este problema hay dos enfoques, el primero construir el firmware localmente con el
comando mos build -local -platform esp32 desde la terminal de nuestro ordenador. La parte
negativa es que para construir el firmware localmente se necesitan muchos recursos por lo que cada
ejecucion es muy lenta. Existe otra manera de construir el firmware localmente siguiendo las
instrucciones del enlace:

https://github.com/v-kiniv/mos-native

Si se quiere evitar tener que construir las imagenes localmente, con el esfuerzo y el tiempo que
conlleva, la otra opcién es contactar con los administradores de la nube de mongoose para que la
vuelvan a levantar los certificados, ya que en muchas ocasiones puedes ser el primero en darte
cuenta de que han caducado. Para ello, acceder al siguiente grupo y avisar del fallo.

https://gitter.im/cesanta/mongoose-os?at=5a7e25adce68c3bc74690082

From:
https://wiki.odins.es/ - OdinS Wiki

Permanent link:
https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

Last update: 2024/10/09 08:35

https://wiki.odins.es/ Printed on 2026/02/04 11:00

https://wiki.odins.es/
https://wiki.odins.es/public/training/preparacionprogramacionesp32?rev=1655377193

	Table of Contents
	Preparacion entorno de programacion del ESP32
	Preparación del entorno
	Instalación IDE arduino
	Configuración para la programación del ESP32
	Resolución de errores
	Detección del dispositivo conectado por bus I2C
	Uso de librería criptográfica con el chip ATECC508A
	Ejemplo 1 - Configuración del chip criptográfico
	Ejemplo 2 - Firmar un mensaje
	Ejemplo 3 - Verificación de Firma Digital
	Ejemplo 5 - Generación de números aleatorios
	Resolución de errores

	Instalación del ACE Framework en el ESP32
	Problemas en Mongoose

